72,611 research outputs found

    Analysis of edge impact stresses in composite plates

    Get PDF
    The in-plane edge impact of composite plates, with or without a protection strip, is investigated. A computational analysis based on the Fast Fourier Transform technique is presented. The particular application of the present method is in the understanding of the foreign object damage problem of composite fan blades. The method is completely general and may be applied to the study of other stress wave propagation problems in a half space. Results indicate that for the protective strip to be effective in reducing impact stresses in the composite the thickness must be equal or greater than the impact contact dimension. Large interface shear stresses at the strip - composite boundary can be induced under impact

    Large amplitude flutter of a low aspect ratio panel at low supersonic speeds comparison of theory and experiment

    Get PDF
    Flutter boundaries, as well as flutter limit cycle amplitudes, frequencies and stresses were computed for a panel of length-width ratio 4.48 exposed to applied in-plane and transverse loads. The Mach number range was 1.1 to 1.4. The method used involved direct numerical integration of modal equations of motion derived from the nonlinear plate equations of von Karman, coupled with linearized potential flow aerodynamic theory. The flutter boundaries agreed reasonably well with experiment, except when the in-plane loading approached the buckling load. Structural damping had to be introduced, to produce frequencies comparable to the experimental values. Attempts to compute panel deflections or stress at a given point met with limited success. There is some evidence, however, that deflection and stress maxima can be estimated with somewhat greater accuracy

    Solving 1D Conservation Laws Using Pontryagin's Minimum Principle

    Get PDF
    This paper discusses a connection between scalar convex conservation laws and Pontryagin's minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is equivalent to the entropy solution. This can be seen as a generalization of the Lax--Oleinik formula to convex (not necessarily uniformly convex) flux functions. Using Pontryagin's minimum principle, an algorithm for finding the minimum value solution pointwise of scalar convex conservation laws is given. Numerical examples of approximating the solution of both space-dependent and space-independent conservation laws are provided to demonstrate the accuracy and applicability of the proposed algorithm. Furthermore, a MATLAB routine using Chebfun is provided (along with demonstration code on how to use it) to approximately solve scalar convex conservation laws with space-independent flux functions

    Mitigating the Curse of Dimensionality: Sparse Grid Characteristics Method for Optimal Feedback Control and HJB Equations

    Get PDF
    We address finding the semi-global solutions to optimal feedback control and the Hamilton--Jacobi--Bellman (HJB) equation. Using the solution of an HJB equation, a feedback optimal control law can be implemented in real-time with minimum computational load. However, except for systems with two or three state variables, using traditional techniques for numerically finding a semi-global solution to an HJB equation for general nonlinear systems is infeasible due to the curse of dimensionality. Here we present a new computational method for finding feedback optimal control and solving HJB equations which is able to mitigate the curse of dimensionality. We do not discretize the HJB equation directly, instead we introduce a sparse grid in the state space and use the Pontryagin's maximum principle to derive a set of necessary conditions in the form of a boundary value problem, also known as the characteristic equations, for each grid point. Using this approach, the method is spatially causality free, which enjoys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a significantly reduced size which is feasible for systems with relatively high dimensions, such as the 66-D system shown in the examples. Once the solution obtained at each grid point, high-order accurate polynomial interpolation is used to approximate the feedback control at arbitrary points. We prove an upper bound for the approximation error and approximate it numerically. This sparse grid characteristics method is demonstrated with two examples of rigid body attitude control using momentum wheels

    Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design

    Get PDF
    Micro Porosity Sintered wick is made from metal injection molding processes, which provides a wick density with micro scale. It can keep more than 53 % working fluid inside the wick structure, and presents good pumping ability on working fluid transmission by fine infiltrated effect. Capillary pumping ability is the important factor in heat pipe design, and those general applications on wick structure are manufactured with groove type or screen type. Gravity affects capillary of these two types more than a sintered wick structure does, and mass heat transfer through vaporized working fluid determines the thermal performance of a vapor chamber. First of all, high density of porous wick supports high transmission ability of working fluid. The wick porosity is sintered in micro scale, which limits the bubble size while working fluid vaporizing on vapor section. Maximum heat transfer capacity increases dramatically as thermal resistance of wick decreases. This study on permeability design of wick structure is 0.5 - 0.7, especially permeability (R) = 0.5 can have the best performance, and its heat conductivity is 20 times to a heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Modelling and measurement accuracy enhancement of flue gas flow using neural networks

    Get PDF
    This paper discusses the modeling of the flue gas flow in industrial ducts and stacks using artificial neural networks (ANN's). Based upon the individual velocity and other operating conditions, an ANN model has been developed for the measurement of the volume flow rate. The model has been validated by the experiment using a case-study power plant. The results have shown that the model can largely compensate for the nonrepresentativeness of a sampling location and, as a result, the measurement accuracy of the flue gas flow can be significantly improved
    • …
    corecore